Linear convergence of the Randomized Sparse Kaczmarz Method
نویسندگان
چکیده
The randomized version of the Kaczmarz method for the solution of linear systems is known to converge linearly in expectation. In this work we extend this result and show that the recently proposed Randomized Sparse Kaczmarz method for recovery of sparse solutions, as well as many variants, also converges linearly in expectation. The result is achieved in the framework of split feasibility problems and their solution by randomized Bregman projections with respect to strongly convex functions. To obtain the expected convergence rates we prove extensions of error bounds for projections. The convergence result is shown to hold in more general settings involving smooth convex functions, piecewise linear-quadratic functions and also the regularized nuclear norm, which is used in the area of low rank matrix problems. Numerical experiments indicate that the Randomized Sparse Kaczmarz method provides advantages over both the non-randomized and the non-sparse Kaczmarz methods for the solution of overand under-determined linear systems.
منابع مشابه
Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate Descent
We show that the Sparse Kaczmarz method is a particular instance of the coordinate gradient method applied to an unconstrained dual problem corresponding to a regularized `1-minimization problem subject to linear constraints. Based on this observation and recent theoretical work concerning the convergence analysis and corresponding convergence rates for the randomized block coordinate gradient ...
متن کاملA fast randomized Kaczmarz algorithm for sparse solutions of consistent linear systems
The Kaczmarz algorithm is a popular solver for overdetermined linear systems due to its simplicity and speed. In this paper, we propose a modification that speeds up the convergence of the randomized Kaczmarz algorithm for systems of linear equations with sparse solutions. The speedup is achieved by projecting every iterate onto a weighted row of the linear system while maintaining the random r...
متن کاملRandomized Block Kaczmarz Method with Projection for Solving Least Squares
The Kaczmarz method is an iterative method for solving overcomplete linear systems of equations Ax = b. The randomized version of the Kaczmarz method put forth by Strohmer and Vershynin iteratively projects onto a randomly chosen solution space given by a single row of the matrix A and converges exponentially in expectation to the solution of a consistent system. In this paper we analyze two bl...
متن کاملAccelerated Kaczmarz Algorithms using History Information
The Kaczmarz algorithm is a well known iterative method for solving overdetermined linear systems. Its randomized version yields provably exponential convergence in expectation. In this paper, we propose two new methods to speed up the randomized Kaczmarz algorithm by utilizing the past estimates in the iterations. The first one utilize the past estimates to get a preconditioner. The second one...
متن کاملConvergence of the randomized Kaczmarz method for phase retrieval
The classical Kaczmarz iteration and its randomized variants are popular tools for fast inversion of linear overdetermined systems. This method extends naturally to the setting of the phase retrieval problem via substituting at each iteration the phase of any measurement of the available approximate solution for the unknown phase of the measurement of the true solution. Despite the simplicity o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.02889 شماره
صفحات -
تاریخ انتشار 2016